What Are the Real-Life Applications of AI?

Artificial intelligence (AI) has the potential to help tackle some of the world’s most challenging social problems. To analyze potential applications for social good, we compiled a library of about 160 AI social-impact use cases. They suggest that existing capabilities could contribute to tackling cases across all 17 of the UN’s sustainable-development goals, potentially helping hundreds of millions of people in both advanced and emerging countries.

Real-life examples of AI are already being applied in about one-third of these use cases, albeit in relatively small tests. They range from diagnosing cancer to helping blind people navigate their surroundings, identifying victims of online sexual exploitation, and aiding disaster-relief efforts (such as the flooding that followed Hurricane Harvey in 2017). AI is only part of a much broader tool kit of measures that can be used to tackle societal issues, however. For now, issues such as data accessibility and shortages of AI talent constrain its application for social good.

We identified 18 AI capabilities that could be used to benefit society. Fourteen of them fall into three major categories:

  •  computer vision, 
  • natural-language processing, 
  • and speech and audio processing. 

The remaining four, which we treated as stand-alone capabilities, include three AI capabilities: 

  • reinforcement learning, 
  • content generation, and 
  • structured deep learning. 

We also included a category for analytics techniques.

When we subsequently mapped these capabilities to domains (aggregating use cases) in a heat map, we found some clear patterns (Exhibit 4).

Exhibit 4

Image classification and object detection are powerful computer-vision capabilities

Within computer vision, the specific capabilities of image classification and object detection stand out for their potential applications for social good. These capabilities are often used together—for example, when drones need computer vision to navigate a complex forest environment for search-and-rescue purposes. In this case, image classification may be used to distinguish normal ground cover from footpaths, thereby guiding the drone’s directional navigation, while object detection helps circumvent obstacles such as trees.

Some of these use cases consist of tasks a human being could potentially accomplish on an individual level, but the required number of instances is so large that it exceeds human capacity (for example, finding flooded or unusable roads across a large area after a hurricane). In other cases, an AI system can be more accurate than humans, often by processing more information (for example, the early identification of plant diseases to prevent infection of the entire crop).

Computer-vision capabilities such as the identification of people, face detection, and emotion recognition are relevant only in select domains and use cases, including crisis response, security, equality, and education, but where they are relevant, their impact is great. In these use cases, the common theme is the need to identify individuals, most easily accomplished through the analysis of images. An example of such a use case would be taking advantage of face detection on surveillance footage to detect the presence of intruders in a specific area. (Face detection applications detect the presence of people in an image or video frame and should not be confused with facial recognition, which is used to identify individuals by their features.)

Natural-language processing

Some aspects of natural-language processing, including sentiment analysis, language translation, and language understanding, also stand out as applicable to a wide range of domains and use cases. Natural-language processing is most useful in domains where information is commonly stored in unstructured textual form, such as incident reports, health records, newspaper articles, and SMS messages.

As with methods based on computer vision, in some cases a human can probably perform a task with greater accuracy than a trained machine-learning model can. Nonetheless, the speed of “good enough” automated systems can enable meaningful scale efficiencies—for example, providing automated answers to questions that citizens may ask through email. In other cases, especially those that require processing and analyzing vast amounts of information quickly, AI models could outperform humans. An illustrative example could include monitoring the outbreak of disease by analyzing tweets sent in multiple local languages.

Some capabilities, or combination of capabilities, can give the target population opportunities that would not otherwise exist, especially for use cases that involve understanding the natural environment through the interpretation of vision, sound, and speech. An example is the use of AI to help educate children who are on the autism spectrum. Although professional therapists have proved effective in creating behavioral-learning plans for children with autism spectrum disorder (ASD), waitlists for therapy are long. AI tools, primarily using emotion recognition and face detection, can increase access to such educational opportunities by providing cues to help children identify and ultimately learn facial expressions among their family members and friends.

Structured deep learning also may have social-benefit applications

A third category of AI capabilities with social-good applications is structured deep learning to analyze traditional tabular data sets. It can help solve problems ranging from tax fraud (using tax-return data) to finding otherwise hard to discover patterns of insights in electronic health records.

Structured deep learning (SDL) has been gaining momentum in the commercial sector in recent years. We expect to see that trend spill over into solutions for social-good use cases, particularly given the abundance of tabular data in the public and social sectors. By automating aspects of basic feature engineering, SDL solutions reduce the need either for domain expertise or an innate understanding of the data and which aspects of the data are important.

Advanced analytics can be a more time- and cost-effective solution than AI for some use cases

Some of the use cases in our library are better suited to traditional analytics techniques, which are easier to create, than to AI. Moreover, for certain tasks, other analytical techniques can be more suitable than deep learning. For example, in cases where there is a premium on explainability, decision tree-based models can often be more easily understood by humans. In Flint, Michigan, machine learning (sometimes referred to as AI, although for this research we defined AI more narrowly as deep learning) is being used to predict houses that may still have lead water pipes (Exhibit 5).

Source: Mckinsey

Leave a Reply

Your email address will not be published. Required fields are marked *